L2E_multivariate.Rd
L2E_multivariate
performs multivariate regression under the L2 criterion. Available methods include proximal gradient descent (PG) and majorization-minimization (MM).
L2E_multivariate( y, X, beta, tau, method = "MM", max_iter = 100, tol = 1e-04, Show.Time = TRUE )
y | Response vector |
---|---|
X | Design matrix |
beta | Initial vector of regression coefficients |
tau | Initial precision estimate |
method | Available methods include PG and MM. MM by default. |
max_iter | Maximum number of iterations |
tol | Relative tolerance |
Show.Time | Report the computing time |
Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta (vector) and tau or eta (vector)
# Bank data example y <- bank$y X <- as.matrix(bank[,1:13]) X0 <- as.matrix(cbind(rep(1,length(y)), X)) tau <- 1/mad(y) b <- matrix(0, 14, 1) # MM method sol_mm <- L2E_multivariate(y, X0, b, tau)#> user system elapsed #> 0.073 0.000 0.073r_mm <- y - X0 %*% sol_mm$beta ix_mm <- which(abs(r_mm) > 3/sol_mm$tau) l2e_fit_mm <- X0 %*% sol_mm$beta # PG method sol_pg <- L2E_multivariate(y, X0, b, tau, method="PG")#> user system elapsed #> 0.016 0.003 0.020r_pg <- y - X0 %*% sol_pg$beta ix_pg <- which(abs(r_pg) > 3/sol_pg$tau) l2e_fit_pg <- X0 %*% sol_pg$beta plot(y, l2e_fit_mm, ylab='Predicted values', main='MM', pch=16, cex=0.8) # MM