L2E_sparse_ncv.Rd
L2E_sparse_ncv
computes the solution path of robust sparse regression under the L2 criterion. Available penalties include lasso, MCP and SCAD.
L2E_sparse_ncv( y, X, b, tau, lambdaSeq, penalty = "MCP", max_iter = 100, tol = 1e-04, Show.Time = TRUE )
y | Response vector |
---|---|
X | Design matrix |
b | Initial vector of regression coefficients, can be omitted |
tau | Initial precision estimate, can be omitted |
lambdaSeq | A decreasing sequence of values for the tuning parameter lambda, can be omitted |
penalty | Available penalties include lasso, MCP and SCAD. |
max_iter | Maximum number of iterations |
tol | Relative tolerance |
Show.Time | Report the computing time |
Returns a list object containing the estimates for beta (matrix) and tau (vector) for each value of the tuning parameter lambda, the run time (vector) for each lambda, and the sequence of lambda used in the regression (vector)
set.seed(12345) n <- 100 tau <- 1 f <- matrix(c(rep(2,5), rep(0,45)), ncol = 1) X <- X0 <- matrix(rnorm(n*50), nrow = n) y <- y0 <- X0 %*% f + (1/tau)*rnorm(n) ## Clean Data lambda <- 10^(-1) sol <- L2E_sparse_ncv(y=y, X=X, lambdaSeq=lambda, penalty="SCAD")#> user system elapsed #> 0.015 0.000 0.015r <- y - X %*% sol$Beta ix <- which(abs(r) > 3/sol$Tau) l2e_fit <- X %*% sol$Beta plot(y, l2e_fit, ylab='Predicted values', pch=16, cex=0.8)## Contaminated Data i <- 1:5 y[i] <- 2 + y0[i] X[i,] <- 2 + X0[i,] sol <- L2E_sparse_ncv(y=y, X=X, lambdaSeq=lambda, penalty="SCAD")#> user system elapsed #> 0.048 0.000 0.048r <- y - X %*% sol$Beta ix <- which(abs(r) > 3/sol$Tau) l2e_fit <- X %*% sol$Beta plot(y, l2e_fit, ylab='Predicted values', pch=16, cex=0.8)