update_beta_MM_sparse.Rdupdate_beta_MM_sparse updates beta for L2E sparse regression using the distance penalty
update_beta_MM_sparse( y, X, beta, tau, k, rho, stepsize = 0.9, sigma = 0.5, max_iter = 100, tol = 1e-04 )
| y | Response vector |
|---|---|
| X | Design matrix |
| beta | Initial vector of regression coefficients |
| tau | Initial precision estimate |
| k | The number of nonzero entries in the estimated coefficients |
| rho | The parameter in the proximal distance algorithm |
| stepsize | The stepsize parameter for the MM algorithm (0, 1) |
| sigma | The halving parameter sigma (0, 1) |
| max_iter | Maximum number of iterations |
| tol | Relative tolerance |
Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized