update_beta_sparse_ncv.Rdupdate_beta_sparse_ncv updates beta for L2E sparse regression using existing penalization methods
update_beta_sparse_ncv( y, X, beta, tau, lambda, penalty, max_iter = 100, tol = 1e-04 )
| y | Response vector |
|---|---|
| X | Design matrix |
| beta | Initial vector of regression coefficients |
| tau | Initial precision estimate |
| lambda | Tuning parameter |
| penalty | Available penalties include lasso, MCP and SCAD. |
| max_iter | Maximum number of iterations |
| tol | Relative tolerance |
Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized