CV_L2E_sparse_ncv.Rd
CV_L2E_sparse_ncv
performs k-fold cross-validation for robust sparse regression under the L2 criterion.
Available penalties include lasso, MCP and SCAD.
CV_L2E_sparse_ncv( y, X, beta0, tau0, lambdaSeq, penalty = "MCP", nfolds = 5, seed = 1234, method = "median", max_iter = 100, tol = 1e-04, trace = TRUE )
y | Response vector |
---|---|
X | Design matrix |
beta0 | Initial vector of regression coefficients, can be omitted |
tau0 | Initial precision estimate, can be omitted |
lambdaSeq | A decreasing sequence of tuning parameter lambda, can be omitted |
penalty | Available penalties include lasso, MCP and SCAD. |
nfolds | The number of cross-validation folds. Default is 5. |
seed | Users can set the seed of the random number generator to obtain reproducible results. |
method | Median or mean to compute the objective |
max_iter | Maximum number of iterations |
tol | Relative tolerance |
trace | Whether to trace the progress of the cross-validation |
Returns a list object containing the mean and standard error of the cross-validation error -- CVE and CVSE -- for each value of k (vectors), the index of the lambda with the minimum CVE and the lambda value itself (scalars), the index of the lambda value with the 1SE CVE and the lambda value itself (scalars), the sequence of lambda used in the regression (vector), and a vector listing which fold each element of y was assigned to
## Completes in 20 seconds set.seed(12345) n <- 100 tau <- 1 f <- matrix(c(rep(2,5), rep(0,45)), ncol = 1) X <- X0 <- matrix(rnorm(n*50), nrow = n) y <- y0 <- X0 %*% f + (1/tau)*rnorm(n) ## Clean Data lambda <- 10^seq(-1, -2, length.out=20) cv <- CV_L2E_sparse_ncv(y=y, X=X, lambdaSeq=lambda, penalty="SCAD", seed=1234, nfolds=2)#> Starting CV fold #1 #> Starting CV fold #2(lambda_min <- cv$lambda.min)#> [1] 0.1#> user system elapsed #> 0.015 0.000 0.015r <- y - X %*% sol$Beta ix <- which(abs(r) > 3/sol$Tau) l2e_fit <- X %*% sol$Beta plot(y, l2e_fit, ylab='Predicted values', pch=16, cex=0.8)## Contaminated Data i <- 1:5 y[i] <- 2 + y0[i] X[i,] <- 2 + X0[i,] cv <- CV_L2E_sparse_ncv(y=y, X=X, lambdaSeq=lambda, penalty="SCAD", seed=1234, nfolds=2)#> Starting CV fold #1 #> Starting CV fold #2(lambda_min <- cv$lambda.min)#> [1] 0.1#> user system elapsed #> 0.058 0.000 0.058r <- y - X %*% sol$Beta ix <- which(abs(r) > 3/sol$Tau) l2e_fit <- X %*% sol$Beta plot(y, l2e_fit, ylab='Predicted values', pch=16, cex=0.8)