REML EM algorithm for estimating variance components
estimate.vc( y, Xtilde, qrXtilde, beta, G, init.sigma = 0.5, init.tau = 0.5, tol = 0.001, maxiters = 1000 )
| y | Vector of observed phenotypes |
|---|---|
| Xtilde | Matrix of covariates (first column contains the intercept, last column contains the E factor for studying the GxE effect) |
| qrXtilde | Object containing QR decomposition of Xtilde |
| beta | Coefficient vector for covariate matrix Xtilde |
| G | Matrix of genotype markers |
| init.sigma | Initial sigma input (Default is 0.5) |
| init.tau | Initial tau input (Default is 0.5) |
| tol | Tolerance for convergence (Default is 1e-3) |
| maxiters | Maximum number of iterations (Default is 1000) |
Estimates for tau and sigma